

INTERDISCIPLINARIDADE NO PROJETO ASTROEM: CONHECIMENTOS MATEMÁTICOS APLICADOS EM CONTEÚDOS DE AERONÁUTICA

Claudia Celeste Celestino Universidade Federal do ABC claudia.celeste@ufabc.edu.br

Wesley Góis Universidade Federal do ABC wesley.gois@ufabc.edu.br

Claudia de Oliveira Lozada Universidade Federal de Alagoas cld.lozada@gmail.com

> Felipe Araújo de Lima Universidade Federal do ABC lipe.araujo.lima@gmail.com

RESUMO

Este trabalho traz um relato de experiência oriundo do Projeto Astroem, uma ação de extensão da Universidade Federal do ABC, que tem como um de seus objetivos centrais contribuir para a melhoria do ensino na Educação Básica. Partindo de um enfoque interdisciplinar, o relato de experiência aborda uma das atividades propostas por um dos eixos temáticos do Projeto, o eixo de Aeronáutica, a partir do cálculo da velocidade Mach e as relações matemáticas estabelecidas pelos alunos para realizar o cálculo. Os resultados demonstraram que os alunos conseguiram compreender os conceitos físicos envolvidos na questão relacionando-os com os conhecimentos matemáticos para se chegar à solução da questão proposta, enfatizando que abordagens interdisciplinares e contextualizadas promovem um ensino mais significativo integrando diferentes áreas do conhecimento.

Palavras chave: Interdisciplinaridade. Conhecimento Matemático. Projeto Astroem.

1. INTRODUÇÃO

Os documentos curriculares brasileiros da Educação Básica, como Parâmetros Curriculares Nacionais, Parâmetros Curriculares Nacionais para o Ensino Médio, Orientações Curriculares para o Ensino Médio e Base Nacional Comum Curricular – BNCC colocam a interdisciplinaridade como um importante enfoque a ser adotado pelos diferentes componentes curriculares. No entanto, a adoção deste enfoque pelo professor em sua prática pedagógica implica em mudança de visão acerca das diferentes áreas do conhecimento, percebendo-as de modo integrado e não fragmentado, como colocam Fazenda (2003) e Japiassu (1976). Nesse sentido, dando continuidade ao que propunham os Parâmetros Curriculares Nacionais tanto do Ensino Fundamental quanto do Ensino Médio e as Orientações Curriculares, a Base Nacional Comum Curricular enfatiza a

proposta interdisciplinar por meio dos temas contemporâneos transversais que podem ser propostos por meio de projetos integradores. Os temas contemporâneos transversais são dispostos em seis macro áreas: meio ambiente, economia, saúde, multiculturalismo, Ciência e Tecnologia, cidadania e civismo. Esses temas também poderão ser abordados de modo intradisciplinar e transdisciplinar.

É nesse sentido, que os livros didáticos do Programa Nacional do Livro Didático publicados após 2018 – ano de início da vigência da Base Nacional Comum Curricular – reiteram a proposta interdisciplinar na abordagem de diversos conteúdos, assim como foram publicados livros de Projetos Integradores para o Ensino Médio que também trazem temas contemporâneos transversais abordados de modo interdisciplinar. No caso do componente curricular Matemática, os livros didáticos mesclam a contextualização e a interdisciplinaridade na abordagem dos conceitos e na proposição de problemas baseados em situações do cotidiano, como colocado por uma das competências previstas pela BNCC (BRASIL, 2018, p. 267), que recomenda "utilizar processos e ferramentas matemáticas, inclusive tecnologias digitais disponíveis, para modelar e resolver problemas cotidianos, sociais e de outras áreas de conhecimento, validando estratégias e resultados". Dessa forma, integrar os conhecimentos é um elemento curricular essencial que deve estar presente na Educação Básica e neste trabalho apresentamos um relato de experiência com enfoque interdisciplinar considerando conhecimentos físicos e matemáticos, num tema contemporâneo transversal – Ciência e Tecnologia especificamente em uma temática de Aeronáutica desenvolvida pelo Projeto Astroem da Universidade Federal do ABC.

2. O RELATO DE EXPERIÊNCIA, RESULTADOS E DISCUSSÃO

O Projeto Astroem é uma ação de extensão ligada à Universidade Federal do ABC que foi criado em 2013 por um grupo de pesquisadores da Engenharia Aeroespacial. Tendo como base eixos formativos provenientes das Ciências Espaciais, o projeto é voltado para a Educação Básica atendendo alunos do 9º ano do Ensino Fundamental e Ensino Médio. Os eixos formativos do projeto são Astronomia, Aeronáutica e Astronáutica, com aulas práticas e teóricas, com enfoque interdisciplinar e STEAM. Todos os eixos estão integrados com a Matemática e com o Pensamento Computacional, estando concentrados no currículo da Educação Básica com os componentes curriculares de Ciências e Física. A abordagem dos conteúdos parte da problematização e da experimentação, trazendo situações contextualizadas para promover uma aprendizagem significativa (MOREIRA, 1999). As aulas são ministradas na Universidade Federal do ABC por monitores do projeto que são bacharelandos dos Cursos de Ciência e Tecnologia e Engenharias. Em 2020, em virtude da pandemia, o projeto teve sua edição remota sendo ministrado em plataformas digitais de ensino como o Zoom atendendo alunos de diversos Estados brasileiros. O relato de experiência aqui apresentado é derivado da edição remota do projeto em 2021, com aulas assíncronas e síncronas, sendo extraído do eixo de Aeronáutica.

Apresentamos um recorte de uma atividade de Aeronáutica que focava no estudo da velocidade supersônica, no caso, as velocidades definidas a partir dos parâmetros de Mach, sendo classificadas como subsônica, transônica, sônica, supersônica e hipersônica. Os ônibus espaciais, que foram muito utilizados pela NASA entre 1981 e 2011 atingiam velocidades hipersônicas. Um Mach (Ma) equivale a velocidade de aproximadamente 1225 km/h sendo a velocidade mínima para que um objeto consiga ultrapassar a barreira do som. Assim, considerando que a velocidade do som é igual a 340 m/s (equivalente a 765 mph = 1 225 km/h), temos que se uma aeronave atinge 3 vezes a velocidade do som,

então atingiu Mach 3 (3 x 340 m/s). Considerando valores mais precisos, temos 343,4 m/s (ou 768,16 mph = 1 236,24 km/h). Assim, foi proposto o seguinte problema: "A Hermeus, uma startup dos EUA, está desenvolvendo um avião hipersônico com mais de cinco vezes a velocidade do som. Considerando um regime hipersônico de Mach 5, qual a velocidade da aeronave sobrevoando uma região na altura do nível do mar?". Em seguida, foi passado um desafio: "O avião mais rápido já construído pelo homem, o SR-71 Blackbird, é capaz de alcançar uma velocidade de Mach 3.5. Considerando que ele se mantenha nesta mesma velocidade durante todo o voo, calcule em quanto tempo este mesmo avião demoraria para dar uma volta em torno da Terra". Abaixo, apresentamos as soluções de dois alunos durante uma aula síncrona (que foi gravada e consta do acervo do Astroem) no final do 2° semestre de 2021, na qual os alunos espelharam as soluções na tela durante a aula na plataforma Zoom:

Figura 1- Resolução dos problemas envolvendo Mach

Fonte: Acervo Astroem

Os alunos procuraram resolver os problemas estabelecendo relações diretas pela regra de três simples por meio de equivalência e efetuando a multiplicação cruzada, o que demonstra que conseguem encontrar a relação entre as grandezas e suas magnitudes e compreender o que significa o Mach e a intensidade dessa velocidade. Para o desafio, os alunos também realizaram conversões de unidades de medida em relação à grandeza tempo, novamente por meio da equivalência de valores. Após a correção dos problemas, foi proposta uma discussão sobre o significado desses valores e foi passado um vídeo curto do filme "Top: Gun – Ases Indomáveis" de 1986 e um trailer do novo filme "Top Gun: Maverick" que estreou em 2022 para os alunos debaterem a velocidade Mach.

3. CONSIDERAÇÕES FINAIS

Os problemas propostos valorizam a interdisciplinaridade entre Ciências/Física e Matemática atribuindo maior significado aos conceitos físicos e matemáticos, permitindo também revisar/reforçar conteúdos matemáticos básicos, promovendo uma aprendizagem significativa com base nas aplicações dos conceitos em situações reais e este tipo de atividade deve ser trabalhada com maior frequência nas aulas da Educação Básica para que os alunos percebam a relação entre os conteúdos dos diferentes componentes curriculares, para que adquiram uma visão sistêmica do conhecimento.

4. REFERÊNCIAS

BRASIL. Base nacional comum curricular. Brasília: MEC, 2018.

FAZENDA, I. Interdisciplinaridade: qual é o sentido. São Paulo: Paulus, 2003.

JAPIASSU, H. **Interdisciplinaridade e patologia do saber.** Rio de Janeiro: Imago, 1976.

MOREIRA, M. A. **Teorias cognitivas da aprendizagem.** São Paulo: EPU, 1999.